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Abstract 

This study sought to detect the highest temporal correlation between wind erosion and drought in 

southern Iran's arid lands based on the Standardized Precipitation Index (SPI) and Standardized 

Dust Storm Index (SDSI) over a 50-year period (1965-2014). Using the Mann- Kendall test, 

changes in SPI (as a proxy of meteorological drought) and SDSI (as a proxy of wind erosion) trends 

were analyzed in temporal resolution (3, 6, 9, 12, 18, and 24 monthly time series). The wind 

erosion's response time to drought was estimated by Lagged cross-correlation. The results revealed 

a decreasing trend in the SPI time series, particularly in the long-term series (12, 18, and 24-month), 

and an increasing trend in the SDSI series in different time scales, from short-term to long-term 

series. These findings indicate the exacerbation of drought and wind erosion in the study region. 

Moreover, the cross-correlation analysis showed that the relationships between SPI and SDSI were 

negative at the level of 5% in all the time series. The maximum correlation was obtained from the 

cross-correlation between the 12-month SPI and 18-month SDSI without time lag (R= -0.22; 

α<0.05). These results indicated that in southern Iran's arid regions, changes in dust events had been 

affected by long-term drought. Therefore, it is expected that after long-term droughts, which 

considerably affect the soil moisture contents, the dust storms are intensified. The Finding of this 

research can help planners take necessary measures against sand and dust storm hazards. 
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1. Introduction 

Defined as a prolonged period of low 

precipitation, drought leads to a severe 

reduction in water resources. In recent years, 

the severity and frequency of droughts have 

significantly increased in arid regions as a 

result of climate change (Chen et al., 2019), 

leading to a rapid reduction of surface flow 

(Martin et al., 2020), the drainage of 

groundwater reservoirs (Levy et al., 2020), 

exacerbated wind and water erosions, and 

changes in the land subsidence (Jeanne et al., 

2019). Among these, wind erosion is a more 

serious environmental problem that has 

increased dust emissions and air pollution in 

most areas of the world (Duniway et al., 

2019).  

Strong winds can deflate the fertile topsoils 

and cause severe damage to biodiversity and 

various industries. In recent decades, soil 

erosion and drought have exerted adverse 

effects on the quality of humans lives and their 

health, crop yields, and the environment 

(Faraji et al., 2019, Cao et al., 2015, Atafar et 

al., 2019, Naderizadeh et al., 2016, Segovia et 

al., 2017, Gabbasova et al., 2016, Shen et al., 

2020).  

Wind erosion is considered one of the most 

important factors in land degradation in 

drylands (Duniway et al., 2019). Therefore, it 

is essential to evaluate the drought's impacts 

on wind erosion and manage their hazards 

over the arid regions worldwide.  

Understanding how wind erosion events are 

influenced by droughts requires collecting 

long-term data and analyzing variations of 

different trends (Tegen & Schepanski, 2018). 

To this end, meteorological data can provide 

long-term information about wind erosion and 

droughts.  

The dependence of wind erosion and dust 

events on climatic factors and droughts has 

been shown in numerous studies (Middleton, 

2019, Achakulwisut et al., 2018, Bolles et al., 

2019, Yarmoradi et al., 2020, Wang et al., 

2020). According to Pu et al. (2019), increased 

sand-dust activities in the U.S were mainly due 

to the decreased rainfall, increased surface 

winds velocity, and soil bareness. Sofue et al. 

(2018) reported the considerable effect of 

precipitation variations on dust storm events in 

the Gobi desert. 

In this regard, increasing and decreasing 

trends of changes in the number of dusty days 

have been reported for Iran's eastern and 

northern regions, respectively, by Modarres & 

Sadeghi (2018). According to the Granger-

Ramanathan averaging (GRA) method, the 

reason behind 65% of the seasonal changes 

occurred in the wind erosion events of the 

eastern half of Iran from 2000 to 2018 was the 

changes made in wind speed and vegetation 

(Ebrahimi-Khusfi et al., 2020). Taking the soil 

texture, topography map, and vegetation index 

(NDVI) into consideration, Nodej & 

Rezazadeh (2018) concluded that Hormozgan 

province could be a dust source., emphasizing 

that sensitivity to dust harvesting increases in 

warm seasons.  

Numerous indices have been developed to 

evaluate droughts, enabling scientists to 

qualify the severity, frequency, and duration of 

the climatic anomalies. In this regard, the most 

common indicators include Palmer Drought 

Severity Index (PDSI), Effective Drought 

Index (EDI), Reconnaissance Drought Index 

(RDI), Standardized Precipitation-

Evapotranspiration Index (SPEI), and 

Standardized Precipitation Index (SPI). 

However, precipitation is the only factor in all 

of these indicators, and SPI is known as a 

common drought index that is widely used for 

drought assessment (Wang et al., 2019, 

Paredes, 2016, Jasim & Awchi, 2020, Uddin et 

al., 2020). 

 Moreover, the activity level of wind 

erosion events can be evaluated via various 

indices, including the Aerosol Optical Index 

(Voss & Evan, 2019, Xian et al., 2020), 

remote sensing data, and meteorological data 
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concerning the frequency of dusty days 

(Yarmoradi et al., 2018). Nonetheless, as 

common meteorological data provide 

information about the frequency of dust events 

without analyzing their intensity, it is 

impossible to estimate wind erosion and its 

intensity through such data. By the way, 

considering the fact that the Dust Storm Index 

(DSI) can solve this problem by considering 

all dust events according to their potential in 

dust excavation, this index appears to be the 

most appropriate index for monitoring wind 

erosion and presenting the long-term intensity 

of dust events at moderate temporal resolution 

and at the regional spatial resolution based on 

meteorological observations (O'Loingsigh et 

al., 2015). Therefore, this study used DSI to 

analyze the trend of dust events. 

Iran's water resources, especially the desert 

wetlands, have been severely damaged by 

droughts (Middleton, 2019). In general, Iran's 

arid/desert regions need to be investigated in 

terms of the droughts' effects on wind erosion, 

as important sources of dust emission, 

including the dried beds of Huorl-Azim, 

Bakhtegan, and Hamoun wetlands, the Lut and 

Kavir deserts, are located in these parts of Iran 

(Sardar Shahraki et al., 2020, Karimzadeh & 

Taghizadeh, 2019). 

In recent years, dust storms have 

exacerbated living conditions in Iran's 

southern regions (Gerivani et al., 2011). 

According to Jalali & Davoudi (2008), factors 

such as little precipitation in south and 

southwest regions, drought, decreasing water 

levels in lagoons and ponds, the withering of 

desert plants, and subsequently rising winds 

since February and March 2007 onwards have 

led to 20 to 30 percent increase in the regions' 

dust storms. However, while changes in wind 

erosion phenomena across Iran's arid regions 

have been previously studied (Ebrahimi-

Khusfi et al., 2020, Ebrahimi Khusfi et al., 

2020), its temporal response to meteorological 

drought in southern Iran's arid regions has not 

been investigated. To this end, this study used 

the standardized dust storm index (SDSI) for 

the first time to analyze the trend of changes in 

dust storms. Moreover, the time lag between 

drought and wind erosion was investigated via 

cross-correlation analysis in various time 

series (from three to twenty-four months) of 

SPI and SDSI over a long-term period (1965-

2014). 

In total, this study was conducted with the 

following objectives:  

(I) To investigate the trend of temporal 

changes in the SPI (as a proxy of 

meteorological drought) and SDSI (as a proxy 

of wind erosion activities or dust storms) over 

the south of Iran. 

 (II) To determine the relationship between 

SPI and SDSI in different time series. 

(III)  To analyze the temporal response of 

wind erosion to drought in different time lags. 

 

2. Materials and Methods  

2. 1. The Study area 
The study area includes southern Iran's arid 

region, which is about 936980 km2 and, 

located at the latitude of  26°00′N to 31°39N 

and the longitude of 44°00E to 63°00E (Fig. 

1). The average elevation of the region and the 

mean annual precipitation is 857.3 m and 137 

mm, respectively. As the area is prone to wind 

erosion, its sand dunes and dried salt lakes are 

mainly distributed in its southeast and 

southwest parts (Rashki et al., 2017, Abbasi et 

al., 2019). Furthermore, different soil types, 

including salt-marsh soil, Gypsum soils, 

saline-alluvial soils, Sierozem, and regosols, 

could be observed in this area (Roozitalab et 

al., 2018). 
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Figure (1): Geographical distribution map of synoptic stations in southern Iran 

 

The total number of synoptic stations with 

relatively good distribution and long-term data 

(1965-2014) in this area is 11 stations, the 

characteristics of which are presented in table 1.

 

Table (1): Geographical coordinates and elevation of the selected stations in this study 

Synoptic station  Longitude  Latitude  Elevation (m) 

Yazd 31.9 54.2 1230.2 

Ahvaz 31.3 48.7 22.5 

Bam 29.1 58.3 1066.9 

Chabahar 25.2 60.6 8 

Dezful 32.4 48.3 143 

Fasa 28.8 53.7 1268 

Iranshahr 27.2 60.7 591.1 

Kerman 30.2 56.9 1754 

Shiraz 29.5 52.6 1488 

Zabol 31.1 61.5 489.2 

Zahedan 29.4 60.9 1370 

  

2.2. Methodology 

Figure 2 shows the main steps followed in this 

study. In short, after obtaining the precipitation 

and wind speed data, SPI and SDSI indices 

were calculated. Then, trend changes in 

drought and wind erosion indices were 

determined via the Mann-Kendall test. Finally, 

the relationship between SDSI and SPI time 

series was examined through the cross-

correlation test. Further details of the research 

methodology are presented in the following 

sub-sections. 
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Figure (2): Flowchart of this study's methodology 

 

2.2.1. Data sets 

The required data regarding precipitation, dust 

codes, wind speed, and horizontal visibility 

were obtained on a 3-hourly time scale for the 

1965-2014 period from the Iranian 

Meteorological Organization (IRIMO). Also, 

the rainfall data was used to calculate the SPI 

index, and other data were used to calculate the 

SDSI, as described in the following sections.  

2.2.2. Meteorological drought estimation 

The Standardized Precipitation Index (SPI) 

was first proposed by McKee et al. (1993) as a 

meteorological drought index. Explaining the 

drought on various time scales, this index is 

based on the rainfall data, and its value is not 

affected by the regional geography. These 

features distinguish the SPI from the other 

indices (Belayneh & Adamowski, 2012). 

SPI is calculated by performing a gamma 

distribution via the following equation:  

𝛤(𝛼) = ∫ 𝑦∝−1𝑒−𝑦𝑑𝑦
∞

0

 (1) 

where Γ (α) is the gamma function, and α 

stands for the shape factor that is calculated 

using equation (2). 

There are different techniques for 

estimating these two parameters. For instance, 

Edwards & McKee (1997) proposed a method 

for calculating the maximum likelihood-based 

on equations (2): 

α = 0.25𝐵(√1 + 1.33𝐵 + 1) (2) 

where 

B = ln(P̅) −
∑ ln(P)

n
 (3) 

where n refers to the total number of 

observations, and P indicates the precipitation 

amounts. 

The cumulative probability of P values and 

Gamma function can be calculated through 

equations (4) and (5), respectively: 

K(p) = ∫ k(P)dx =
1

βαΓ(c)

x

0

=∫ P(c−1)e(−P/β)
x

0

 

(4) 

M(p) = a + (1 − a)K(p) (5) 

where "a" is the probability of zero 

precipitation, and M(p) refers to the 

cumulative probability. The SPI index is then 

computed as the following: 
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Z = SPI =

{
−(t −

c0+c1t+c2t
2

1+d1t+d2t1
2+d3t3

) for0 < M(p) ≤ 0.5

+ (t −
c0+c1t+c2t

2

1+d1t+d2t1
2+d3t3

) for0.5 < M(p) < 1

                                                (6) 

where "t" factor is defined as follows: 

t =

{
 

 √ln [
1

(M(p))2
] for0 < M(p) ≤ 0.5

√ln [
1

(1−M(p))2
] for0.5 < M(p) < 1

                                                (7) 

where "x" refers to the cumulative probability 

of recorded rainfall, and c0, c1, c2, d0, d1, d2 

indicate constants values (Mishra & Desai, 

2005).  

 Positive and negative values of this index 

indicate dry and wet years with different 

intensities, respectively. Moreover, the 

monthly SPI values were calculated for 

various time scales (3, 6, 9, 12, 18, 24 and, 48 

months) based on what was described above. 

3.3 SDSI calculation 

Dust Storm Index (DSI) is a useful index 

for long-term monitoring of wind erosion 

events (O’Loingsigh et al., 2014), which is 

calculated by Leys et al. (2011) based on dust 

concentration during local dust events (LDE), 

moderate dust storm (MDS), severe dust 

storms (SDS), and field observations. DSI is 

computed using equation (8), and its value is 

greater than or equal to zero. Higher values of 

this index suggest more soil losses and 

intensification of wind erosion events. 














n

i

m

LDE
MDSSDSDSI

1

)
20

()5(    (8)             

 In the above equation, "n" shows the 

number of stations, and "i" is the value of "n" 

stations for i=1-n. Also, LDE, MDS, and SDS 

are local, moderate, and severe dust storms, 

respectively.  

Table 2 describes the definitions of weather 

codes offered by the World Meteorological 

Organization (WMO). Codes (07-08), (09, 30 

to 32), and (33 to 35) demonstrate LDE, MDS, 

and SDS, respectively. 

Finally, the DSI- related values were 

standardized using the method described for 

the drought index, and the standardized dust 

storm index (SDSI) values were calculated for 

different time series. 

Dust storm type code definition 

Local dust events 

07 Deflated sand and dust 

08 Dust devils 

Moderate dust storm 

09 dust incidents occurred near the station in the past hours 

30 Declined slight and moderate DE with 0.2m <HV <1Km 

31 Constant slight and moderate DE with 0.2m <HV <1Km 

32 Rising slight and moderate DE with 0.2m <HV <1Km 

Severe dust storm 

33 Declined SDS with H.V. <200 m 

34 Stable SDS with H.V. <200 m 

35 Rising SDS with H.V. <200 m 

Table (2): WMO5 codes relating to wind erosion 

                                                           
5. World Meteorological Organization 
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2.2.3. Mann-Kendall test 

The Mann-Kendall is a non-parametric test 

widely utilized to detect the trend of changes 

in various variables. The zero hypothesis (H0) 

belongs to independent data with a definite 

distribution. An alternative hypothesis (H.A.) 

indicates that the data follows a uniform trend. 

The Mann-Kendall statistic 𝑍𝑚 is given in 

terms of equations (9) to (12):  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (9) 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

= {

+1 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) < 0

 
(10) 

                                                   

(11) 

𝑉𝐴𝑅(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5)

−∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

] 

(12) 

𝑍𝑚

=

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
𝑖𝑓𝑆 > 0

0 𝑖𝑓𝑆 = 0
𝑆 + 1

√𝑉𝐴𝑅(𝑆)
𝑖𝑓𝑆 < 0

 

where "n" and "m" are the number of 

observations and interconnected groups, 

respectively. "xi" and "xj" indicate the values 

of the study variables in years "i" and "j" (j>i), 

and "sgn" refers to sing (+ or -) of (xj – xi). 

Moreover, "Z" refers to the standard test 

statistic. The positive values of "Z" suggest 

upward trends, whereas negative "Z" values 

demonstrate downward trends. A significance 

level "α" is also applied to assessing either an 

upward or downward trend.  to this end, this 

study applied a 5% significance level 

(alpha=5%). The Durbin–Watson test was also 

administered as a usual method for 

autocorrelation testing. For more details, see 

Ahani et al. (2012). Backward correlation 

refers to the correlation between two time 

series transmitted in relation to each other. 

2.2.4. Cross-Correlation analysis 

Lagged correlation shows the dependence of 

two time series on each other by considering 

different delay times. For different input data, 

the cross-correlation function relates to the 

thump reaction. In the asymmetrical cross-

correlation function, the output signal is 

affected by the output signal. Response time is 

defined as the delay associated with the 

maximum correlation function (Lee et al., 

2006). At a given delay time, the cross-

correlation is obtained from equation (13) 

(McCoy & Blanchard, 2008):  

(13) 

rt

=
n∗∑p1p2 − ∑p1∑p2

√n∗∑p1
2 − (∑p1)[n ∗ ∑p2

2 − (∑p2)]
 

where "rt" is the cross-correlation coefficient 

at lag time t; "t" refers to the time lag between 

study time series; "n*" shows the number of 

overlapping data; "p1" is the SPI series, and 

"p2" shows the dust storm series. It should be 

noted that if "rt" values are larger than the 

standard error, the correlation value with a 

specified lag time is significant at the 5% 

confidence level (Lee et al., 2006). 

3. Results and Discussion 

Figures 3 and 4 show the SPI and SDSI time 

series at different time scales (3, 6, 9, 12, 18, 

and 24 monthly) for southern Iran's region 

over the study period (1965-2014), 

respectively. In these Figures, the first-order 

linear trends for each time series are displayed 

with red lines. According to this study's 

results, the trend of SPI changes has been 

decreasing in all the time series mentioned 

(Fig. 3). The results obtained from the M.K. 

test indicate that the SPI's downward trend was 

significant at time scales of 9, 12, 18, and 24-

month (Table 3). The Z values for these time 
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scales were estimated as -2.20, -2.80, -3.68, 

and -4.55, respectively. These findings suggest 

that more severe droughts have dominated the 

arid lands of southern Iran in recent years, 

particularly in the mentioned time scales. In 

contrast, the SDSI variations had an increasing 

trend in all time scales (Fig. 4). The estimated 

Z values were more than + 10 over the whole 

study period (from 3 to 24-month) (Table 3), 

showing that dust storms have been intensified 

in the study region throughout the study 

period.  

The study's results also revealed that there 

was a negative correlation between the 

absolute value of the Z and SPI and SDSI 

values. In other words, with the decrease of 

drought trend (an increase of SPI values) in 

Iran's southern regions, the rate of dust storms 

had decreased and vice versa. 

  

 
Figure (3): SPI variations in different time series for the Southern regions of Iran during 1965-2014 

 
Figure (4): SDSI variations in different time series for Iran's Southern regions during 1965-2014 
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24 Monthly 18 Monthly 12 Monthly 9 Monthly 6 Monthly 3 Monthly Time Series 

-4.55* -3.68* -2.80* -2.20* -1.67 -1.2665 SPI Z parameter 

14.39* 13.94* 13.78* 13.40* 12.77* 11.85* SDSI 

Table (3): Mann- Kendall statistic values in different time series of SDSI (Z- value > +1.96 and <-1.96 

represent upward and downward trends, respectively. * indicates a significant level at α<0.05) 

 

Moreover, the effects of different time-lags 

on SPI and SDSI time series were investigated 

using Lagged cross-correlation analysis. Table 

4 shows the estimates made in this regard. In 

this table, the row "a" is the first time-lag 

when there was a significant correlation 

between SPI and SDSI time series; the row "b" 

is the time-lag when the highest correlation 

was observed, and the row "c" indicates the 

maximum correlation coefficients between SPI 

and SDSI time series in the time-lag with 

maximum correlation coefficients. For 

instance, the results obtained from the cross-

correlation between the 3-month SPI and 18-

month SDSI show that from the fifths time-lag 

on, the relationship between these time series 

has become significant and that in the 

thirteenth time-lag, the correlation coefficient 

has been maximized. Accordingly, the 

respective plot can be seen in figure 5(a), as 

shown in Table IV and figure 5(b). 

Furthermore, the maximum correlation was 

found between 18-month SPI and 12-month 

SDSI without any time lag (R= -0.22; p 

<0.05). The study's results also revealed that 

the correlation coefficients between long-term 

series are often higher than the short-term 

ones.
 Standardized Dust Storm Index (SDSI) 

S
ta

n
d

a
rd

iz
ed

 P
re

ci
p

it
a

ti
o

n
 I

n
d

ex
 (

S
P

I)
 

 3 6 9 12 18 24  

3 

1 1 3 5 5 0 The first lag with significant r a 

3 5 8 8 13 14 The lag with maximum r b 

-0.12 -0.13 -0.14 -0.14 -0.15 -0.15 The maximum r c 

6 

0 1 0 0 1 0 The first lag with significant r a 

2 5 6 7 10 12 The lag with maximum r b 

-0.16 -0.16 -0.16 -0.17 -0.18 -0.17 The maximum r c 

9 

0 0 1 0 0 0 The first lag with significant r a 

0 2 4 6 7 9 The lag with maximum r b 

-0.19 -0.18 -0.16 -0.17 -0.18 -0.17 The maximum r c 

12 

0 0 0 0 0 0 The first lag with significant r a 

0 0 2 5 7 7 The lag with maximum r b 

-0.19 -0.20 -0.19 -0.18 -0.19 -0.20 The maximum r c 

18 

0 0 0 0 0 0 The first lag with significant r a 

0 1 0 0 5 7 The lag with maximum r b 

-0.19 -0.20 -0.21 -0.22 -0.19 -0.20 The maximum r c 

24 

0 0 0 0 0 0 The first lag with significant r a 

0 0 0 1 1 3 The lag with maximum r b 

-0.19 -0.21 -0.22 -0.22 -0.22 -0.20 The maximum r c 

Table (4): Lag cross-correlation matrix of SPI and SDSI over the Southern regions of Iran 

(significant level is α<0.05) 
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Figure (5): The time-lag cross-correlation between SPI and SDSI over Iran's Southern regions. 

Significant levels are (p < 0.05) displayed by blue horizontal lines 

 

In total, the study's findings indicated that 

the study region experienced a significant 

downward trend in SPI and a significant 

upward trend in SDSI over the monitoring 

period (1965-2014). The exacerbation of 

meteorological droughts has been reported in 

many previous studies (Moradi Dashtpagerdi 

et al., 2014), which is consistent with the 

present study's findings. The intensification of 

dust storms in Iran has also been approved by 

Ebrahimi Khusfi et al., 2020a, and Vali & 

Roustaei, 2018. The results of this study also 

suggested that while the significant increasing 

trend in SDSI had occurred over the whole 

time series of the study period, the significant 

decreasing trend in SPI had mainly occurred in 

the long-term series. Considering the fact that 

low precipitation rate is one of the special 

features of the drylands, especially at short-

term scales (e.g., one-to-three-month time 

scales), it can be concluded that with an 

increase in time series, precipitation variations 

become more significant and meaningful 

(Kangas & Brown, 2007). In other words, the 

existence of so many zeros in the precipitation 

time series causes the data not to follow the 

normal distribution, and the accuracy of SPI 

values decreases in the short-term series 

compared to what occurs in the long-term 

series (Ahani et al., 2012). 

Although there was a significant negative 

correlation between SPI and SDSI values in 

southern Iran's arid regions at different time 

series, the highest correlation coefficients were 

found between the 18-month SPI and the 12-

month SDSI series (-0.22) with zero time- lag 

(Table 4). The significant negative correlation 

between precipitation and dust storms has been 

reported in some previous studies (Zender & 

Kwon, 2005, McTainsh et al., 1989, 

Mahowald et al., 2003, Guan et al., 2015), 

which confirm this study's results. Therefore, 

it is expected that after long-term droughts that 

considerably affect the soil moisture contents, 

the dust storms are intensified. On the other 

hand, rainfall has a critical role in controlling 

wind erosion events in arid and semi-arid 

regions because it is one of the major sources 

of ground moisture increase (Chen et al., 

2020).  

Moreover, as rainfall and soil moisture 

decrease, the dryness of the earth's surface 

increases, and the resistance of soil to wind 

shear decreases. Therefore, the soil is easily 

removed from the bed, leading to the 

formation of sand and dust storms (Ebrahimi 

Khusfi et al., 2020). In arid regions, sparse 

vegetation may be another factor in reducing 
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the time lag between drought and wind erosion 

events since vegetation is an important factor 

in maintaining the soil's moisture and 

protecting the soil against wind erosion. In 

other words, vegetation helps increase the 

wind erosion response time to droughts (Wang 

et al., 2003, Capodici et al., 2008). Therefore, 

it appears that the simultaneous occurrence of 

wind erosion and drought in the study area is 

due to the large amounts of wind erosion-

sensitive lands (e.g., the Lut and Kavir deserts 

and the wetland dried beds, Sistan Hamouns, 

Jazmurian dried lake) compared to the 

vegetated lands. 

4. Conclusion 

This study sought to investigate the 

relationship between drought and dust storms 

at various time series based on meteorological 

data obtained from several stations across 

Iran's southern regions. To this end, SPI and 

SDSI trends were investigated using the non-

parametric M.K. test at different time scales 

(3, 6, 9, 12, 18, 24 monthly time series) over a 

50-year period (1965-2014). The study's 

findings showed that the study region 

experienced significant downward trends in 

SPI, which indicates an increase in drought, 

and significant upward trends in SDSI, which 

demonstrates a decrease in wind erosion. 

 As expected, according to the cross-

correlation analysis, the increase in drought 

intensity has exacerbated soil erosion in 

southern Iran. Given that the leading cause of 

the decrease in rainfall, as the most important 

factor affecting meteorological drought, is an 

increase in greenhouse gases derived from 

increasing human activities (Şahin et al., 

2019), taking appropriate measures can 

mitigate the negative effects of drought on 

other phenomena, particularly dust storms. 

The development of plants that are resistant to 

climate stress, especially drought stress, may 

minimize the risks of wind erosion and dust 

storms in arid areas. Thus, such measures can 

reduce greenhouse gas emissions, increase the 

soil's moisture-holding capacity and decrease 

the number of dust storms.  

Moreover, investigating and discovering the 

temporal response of dust storms to other 

climatic and terrestrial factors in different 

regions can provide a broader insight into 

wind erosion and identify the impact time of 

the factors affecting it, which is recommended 

for future studies. Also, predicting the 

temporal trends of these factors using new 

models and techniques of machine-learning 

can be another suitable approach to find out 

their future changes and take measures in line 

with combat to desertification goals.
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