تشریح مهندسی آکوستیمی‌های بیابان
سال دوم، شماره سوم، زمستان 1397، صفحه 29

تحليل مکانی شوری آب زیرزمینی دشت سرخون با استفاده
از سامانه اطلاعات جغرافیایی GIS

احمد نوح‌گری، فاطمه ریاحی، مجید خیاط خلیفی، حسن وقفرد

1 دانشیار دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان
2 کارشناس ارشد آب‌و‌خیزداری، دانشگاه هرمزگان

پست الکترونیک: فاطمه_ریاحی@yahoo.com

3 دانشیار دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان
4 استاد دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

تاريخ پذیرش: 96/11/20
تاريخ دریافت: 96/3/15

چکیده:

انتخاب یک روش میانی‌بینی به‌زیست نویزگرها یک منطقه در نقشه نمونه‌گیری‌شده، تحقیق مهمی در مدیریت داده‌ها دارد. یکی از شاخص‌های مهم در بررسی وضعیت کیفی آب‌های زیرزمینی، هدایت الکتریکی است. هدف از انجام این پژوهش، انتخاب مناسب‌ترین روش میانی‌بینی به‌منظور بررسی و تحلیل مکانی شوری آب‌های زیرزمینی دشت سرخون است. در این پژوهش با استفاده از نرم‌افزار 9.3 ARC GIS مدل مکاف، مدل‌های کاربردی (GPI، LPI و RBF) و مدل‌های نهایی BM، RMSE و MBE به‌کار گرفته شد. نتایج نشان داد که روش تابع شعاعی و روش کریچنج معمولی به‌دلیل دارا بودن بالاتر و R کمتر، روش‌های MBE و RMSE باعث اعتماد‌پذیری کمتری نسبت به مقدار دیگری روی مشخص شد که روش کریچنج معمولی دارای صحبت بیشتری است. بر اساس نتایج تغییرات شوری دشت سرخون با روش کریچنج معمولی به‌عنوان بهترین نظریه داشته می‌شود و با استفاده از نظیر استفاده برای کشاورزی در دو کلاس مشکل کم یا متوسط (84 درصد) و مشکل شدید (35 درصد) قرار گرفت.

واژه‌های کلیدی: شوری، میان‌بینی، کریچنج، دیاگرام شور، دشت سرخون.
مقدمه

آب زیرزمینی یکی از مهم‌ترین منابع طبیعی در جهان است. در سیستم‌های آبیاری، به‌طور گسترده‌ای به‌کار می‌رود. به‌طور کلی، آب‌های زیرزمینی به‌طور مستقیم در آب‌های زیرزمینی کشور تأمین می‌شود (دخایی و همکاران، 1384). تغییرات آب‌های زیرزمینی از جمله تغییرات شوری و در اثر افزایش نیروی تنشی و تغییرات شیمیایی آب‌های زیرزمینی، تحقیقات بسیار زیادی در این زمینه انجام شده است. در این مقاله از آب‌های زیرزمینی آماده‌گیری شده توسط خوزستان و همکاران (1998) در استان خوزستان و همکاران (2007) استفاده شده است.

روش‌گوگانوی برای شناسایی و پیش‌بینی تغییرات ویژگی‌های آب‌های زیرزمینی وجود دارد که کدامیک از آنها بسته به وضعیت منطقه و وجود آمار و داده‌های کافی، درای دقت‌های گوگانوی می‌باشد. این جمله بر روی میان‌بایی برای تهیه اندازه‌گیری‌های تغییرات کیفیت آب‌های زیرزمینی می‌تواند به روشنی زمین‌کاری کردن و کُدی کردن، انتخاب روش مناسب یها ی معناده و تهیه تحقیقات ویژگی‌های کیفی آب‌های زیرزمینی گامی اساسی و مهم در متغیرهای منابع آب مطرح می‌شود. امر سختی می‌باشد نسبت به این نتیجه‌ها که در این مقاله در حوزه‌های مختلف در افغانستان، انجام شده است.

1. Dagostino et al.
2. Theodossiou et al
3. Anthemountas
تحلیل مکانی شوری آب زیرزمینی در استان از...

که از روشهای زمین‌آمیزی، روش کورکچی‌گی و از میان روش‌های معین، روش نابع شعاعی از دقت بالاتر برای بیشتر عامل‌ها بخشنده بود.

شعبانی (2009) در مطالعه‌ی تحت عنوان تحلیل مکانی آلوگوی آب‌های زیرزمینی منطقه زسکان، خصوصیات کیفی آب‌های زیرزمینی منطقه از نظر شوری، لیت‌ترات، PH و TDS و با استفاده از روشهای زمین‌آمیزی و معین مورد بررسی قرار داد.

نتایج نشان داد که روش زمین‌آمیزی کورکچی به شیوه‌ی نسبت به روش‌های معین در تهیه RMSE بالاتر و نقص تغییرات ویژگی‌های کیفی آب‌های زیرزمینی دشت ارستخان، از دقت بالاتر بخشنده بوده و در اجرای این بحث است. فنون (2008) در تحقیقی درباره کیفیت آب‌های زیرزمینی دشت‌های شکارلو تریفگ در شمال مراغه از نظر میزان دینامیک گرمایش و انرژی‌های باکتریولوژیکی از روش کورکچی‌گی معنی‌داری برای مطالعه و به‌هم‌بندی تغییرات کیفی آب زیرزمینی اسفناج کردند تا جایگزینی روش‌های ارستخان، از دقت بالاتر بخشنده بوده و با اندازه‌گیری گرمایش و انرژی‌های باکتریولوژیکی در این مناطق باعث تغییر کیفیت آب‌های زیرزمینی می‌شود.

مواد و روش‌ها

منطقه مورد مطالعه

محور مطالعاتی سرشان به فاصله تقریبی 25 کیلومتری از بندعابس در دامنه شرقی شمال شرقی کوه گین واقع شده است. این حوزه با مساحت حدود 718/2 هکتار و در مختصات جغرافیایی 9 7/35 37/35 عرض شمالی و 54º 6/33 طول شرقی، در حوضه‌ی آبریز سرشان واقع شده است. محدوده مطالعاتی سرشان از شمال شرق و شری به محدوده شیمی-اختصاصی در شمال به محدوده مطالعاتی سرشان- سیاه‌بیک از گربه به محدوده‌های رضوان، این شری و بندر عباس و از جنوب به نقطه‌ی قرنم می‌گردد (شکل 1).

روش تحقیق

در این پژوهش، از میانگین آماری 10 ساله هدایت الکتریکی مربوط به 46 حلقه چاه نمونه‌بندی موجود در دشت سرشان به‌عنوان منابع آماری استفاده شد. در محله بسته‌بندی ماهی‌های مربوط به EC از نظر نرم‌افزار مورد بررسی قرار گرفتند و به‌مکانی شبیه‌پیش‌گیری مکانی متغیرها، واریوگرام داده‌ها ترسیم شد.
۱-۱ آستانه متغیر نما
به مقدار نتیجه که متغیر نما در دامنه تأثیر به آن می‌رسد، آستانه
گفته می‌شود. مقدار آستانه برابر با واریانس کل تمام
نمونه‌های است در محاسبه تغییر نما به کار رفته‌اند (حسین
پاک، ۲۰۰۶).
در روش کریگینگ، متغیر نماهایی که به سقف مشخص
می‌رسند، هم‌نیمه بیشتر دارند. در مواردی متغیر نماهایی به
دست می‌آید که در محدوده واقع مورد نظر، تابعی به
نیزدیک‌شدن به حد ثابت ندارند. این متغیر نماهای می‌توانند
نانه‌دهند و جزء وابسته روند در داده‌ها و یا عدم ایستای داده‌ها
بایدند. گاهی نیز ممکن است تغییر نمایی به آستانه تغییر نما
در جهت مختلف متفاوت این پدیده، به اثر ناهنگام گردی
کمیت مورد نظر باشد.

۱-۲ اثر قطعه‌ای
مقدار متغیر نما در میانه‌ای مختصات بین بازیهای
قطعه‌ای (Co) نامیده می‌شود. در حالی که به نیاز به
صورت باشد، اما در بیشتر مواقع برگریت از صفر است. در این
حالات، جزء تصادفی و یا غیر ساختاردار متغیر ظاهر می‌شود
(حسین پاک، ۲۰۰۶).

۲-۱ میزان تأثیر
شمع تأثیر یا دانه فاصله‌ای است که در مواردی آن نمونه‌ها بر
هم اثر ندارند و تغییر نما به حالت افقی در می‌آید. دانه تأثیر
کوتاه، پانزده تغییرپذیری زیاد و دانه تأثیر بلند، نشان‌دهنده
هم‌کنون جامعه مورد مطالعه است (شکل ۲) بنا بر این
می‌توان در حالت افقی، فاصله نمونه‌های فری‌ها را افزایش داد
(خوان و همکاران، ۲۰۰۹).

\[
MBE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \bar{y}}{10} \right)
\]

شکل ۲: واریوگرام و پارامترهای آن
تحلیل مکانی شوری آب زیرزمینی دشت سرخون با استفاده از...
در شکل ۴ نقشه کیفیت آب زیرزمینی دشت سرخون بر اساس دیاگرام شور با استفاده از فاکتور TDS (غلظت املاح محلول) نشان داده است.

جدول ۴. مساحت مربوط به هریک از طبقات در دشت سرخون بر حسب میکرومتر بر سانتی‌متر

<table>
<thead>
<tr>
<th>طبقات (هکتار)</th>
<th>مساحت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1933/5</td>
<td>4/92</td>
</tr>
<tr>
<td>2550/2</td>
<td>26/53</td>
</tr>
<tr>
<td>3200/8</td>
<td>0/37</td>
</tr>
<tr>
<td>3500/3</td>
<td>0/47</td>
</tr>
<tr>
<td>3500-5500</td>
<td>2/38</td>
</tr>
<tr>
<td>4500-5500</td>
<td>2/52</td>
</tr>
<tr>
<td>5500-6500</td>
<td>2/74</td>
</tr>
<tr>
<td>6500-7500</td>
<td>2/16</td>
</tr>
<tr>
<td>7500-8500</td>
<td>2/93</td>
</tr>
<tr>
<td>8500-9500</td>
<td>2/55</td>
</tr>
</tbody>
</table>

شکل ۴. نقشه تغییرات آب‌های زیرزمینی دشت سرخون بر اساس روش کریجینگ معمولی

شکل ۵. نقشه کیفیت آب زیرزمینی دشت سرخون بر حسب میکرومتر بر سانتی‌متر

در جدول ۴، مساحت مربوط به طبقات در دشت سرخون نشان داده شده است. بر این اساس، بیشترین سطح منطقه، بین 20 و 25 هکتار می‌باشد و درصد از سطح منطقه، دارای هدایت الکتریکی به میزان ۱۵۰۰ تا ۲۵۰۰ میکرومتر بر سانتی‌متر است.
جدول ۴: ساحت مربوط به گروه‌های کیفیت آب براساس پارامتر EC

<table>
<thead>
<tr>
<th>طبقات مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار مساحت (ha)</td>
</tr>
<tr>
<td>طبقه منطقه</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>اول</td>
</tr>
<tr>
<td>دوم</td>
</tr>
<tr>
<td>سوم</td>
</tr>
<tr>
<td>مجموع</td>
</tr>
</tbody>
</table>

جدول ۵: ساحت گروه‌های مختلف آب از نظر شرب براساس دیگر شور

<table>
<thead>
<tr>
<th>شرب</th>
<th>TDS مقدار</th>
<th>مساحت مساحت (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>یک</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>دو</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>سه</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>0.6</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

هدف از انجام این پژوهش، انتخاب مناسبترین روش بینایی در تهیه نشانه کیفیت آب‌های زیرزمینی از نظر میزان شوری و بهنی‌بودن آن برای مصارف شرب و آب‌پز. در نتیجه به‌دست آمده از جدول ۲ و ۳ نشان می‌دهد که این نشانه‌ها در مورد استفاده از قرار کردن، کرجی‌گنج معمول می‌باشد، با جهت همبستگی است قابل قبول زمانی اگر به‌ویژه روش کرجی‌گنج در مطالعات و تحقیقات پیشین نیز مورد تأیید قرار گرفته است. در این زمینه، تفاوت زده مهرچری و همکاران (2008) در مطالعه‌ای در دشت ارسجان برد به تحلیل مکانی برخی از ویژگی‌های کیفی آب زیرزمینی پرداختند و نتیجه RMSE حاصل نشان داد که روش کرجی‌گنج براساس معیار برتری داشته و در نهایت، به‌عنوان روش بهتری به‌نی‌بودن مناسب برای مهندسین است. در این پژوهش نیز، نشانه‌های تغییرات شوری دشت سرخون با روش کرجی‌گنج معمولی به‌نی‌بودن و بر مناسبی آن در دشت سرخون از نظر کیفیت، براساس دیگر شور در جهرام کلالس (جدول ۵) و همچنین از نظر استفاده برای کشاورزی طبقه‌بندی کالیفرنیا در دو کلاس قرار گرفت (جدول ۶). نشانه‌های تکنیکی آیواخان سرخون نشان می‌دهد که به‌طور کلی، آلیه‌های زیرزمینی در بخش غربی و مرزی و همچنین مرکزی دشت، دارای املاح کمتری بوده که می‌توان آن

References: