تحلیل مکانی شوری آب زیرزمینی دشت سرخون با استفاده
از سامانه اطلاعات جغرافیایی GIS

امحمد نوهوگر، فاطمه ریاحی، مجید خیاط خلفی، حسن وقارفردخانگه هرمزگان

1 دانشیار دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان
2 کارشناس ارشد آب‌های زیرزمینی، دانشگاه هرمزگان
3 پست الکترونیک نویسنده مسئول: Fateme_riahi@yahoo.com

3 دانشیار دانشکده کشاورزی و منابع طبیعی کرج

استادیار دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

چکیده:
انتخاب یک روش میانیابی بهینه برای تخمین وزیگه‌های یک منطقه در نقاط نمونه‌گیری‌نشده، نقش مهمی در مدیریت داده‌ها دارد. یکی از شاخص‌های مهم در بررسی وضعیت کیفی آب‌های زیرزمینی، هدایت الکتریکی است. هدف انجام این پژوهش، انتخاب مناسب‌ترین روش میانیابی بررسی و تحلیل مکانی شوری آب‌های زیرزمینی دشت سرخون است. در این باره با استفاده از نرم‌افزار Arc GIS 9.3 روش‌های مختلف میانیابی از جمله کریجینگ معمولی، کریجینگ ساده و روش‌های معین مانند عکس فاصله (GPI) تابع شعاعی (LPI، IDW)، تخمینگرهای موضعی (RBF)، تخمینگرهای عمومی (RMSE) و میانگین MBE و کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R) نتایج نشان داد که روش نابع شعاعی و روش کریجینگ معمولی بدلیل دارای بالاتر و R کانتر، میانگین MBE و کانتر و ابزار (R)
آب زیرزمینی یکی از مهم‌ترین منابع طبیعی در جهان است. در شرایط کوچک، به‌کار‌گیری ملاک‌های از مصارف آب شیرین به‌خصوص در بخش شرب توزیع منابع آب زیرزمینی تأمین می‌شود (حاجی‌زاده و همکاران، 1384). تغییرات آب‌های زیرزمینی و شورش‌های منابع آب در حالت ناخود نظری بی‌طرفی در راه توسعتی گزارشی که به‌خصوص در اراضی خشک است. تغییرات آب‌های زیرزمینی همچون آب سطحی دالاً در حال تغیر است؛ اما تغییرات نسبت به آب‌های سطحی بسیار کندتر صورت می‌گیرد (بهبهانی، 2005). تغییرات شوری و انحلال مواد کاغذی مهم در بهره‌برداری صحیح منابع آب است. افزایش یا کاهش تغییرات ویژگی‌های شیمیایی آب‌های زیرزمینی، تحقیقات از ارائه داده را در فرآیند تغییر می‌کند و در صورت استفاده و بهره‌برداری از آب‌های زیرزمینی آب‌های زیرزمینی ایفا می‌کند. روشهای گواگونی برای مطالعه و پیش‌بینی تغییرات ویژگی‌های آب‌های زیرزمینی وجود دارد که هر کدام از آن‌ها بسته به وضعیت منطقه و ویژگی آب‌های زیرزمینی کامی، دارای دقتی تغییرات گواگونی می‌باشد. از جمله روشهای میان‌یابی برای تهیه نقشه تغییرات که در آب‌های زیرزمینی شاید به ویژگی‌های آب‌های زیرزمینی کامی استفاده باشند. روشهای زیست‌آموز کرکبینگ و کرکبینگ زنده‌مایندگی می‌باشد. انتخاب روشهای مناسب به‌پایان داده تغییرات و چالش‌هایی که در آب‌های زیرزمینی به‌وجود می‌آید مات در سکوب‌مدیر سطحی آب‌های زیرزمینی استخوان و در صورتی که منطقه به‌شدت مورد استفاده گردد، امر در مسئله می‌باشد. از تغییرات منطقه‌ای که در روش‌های زیست‌آموز کرکبینگ و کرکبینگ در صورتی که منطقه به‌شدت مورد استفاده گردد، امر در مسئله می‌باشد.
تحلیل مکانی شوری آب زیرزمینی دشت سرخون با استفاده از...

که از نیم روش‌های زمین‌آمده، روش‌های کریجینگ و از میان روش‌های معین، روش تابع شعاعی از دقت بالاتر برای بیشتر عامل‌ها برخورد بود.

شفعاتی (2009) در مطالعه‌ی تحت عنوان تحلیل مکانی آلوگ‌های زیرزمینی منطقه ارسجان، خصوصیات کیفی آلوگ‌های زیرزمینی منطقه از نظر شوری، نیترات، PH و TDS را با استفاده از روش های زیمنسآمر و معین مورد بررسی قرار داد. نتایج نشان داد که روش زیمنسآمر کریجینگ به بهبود دادارا بودن رایانه‌ای RMSE بین ریت بسته به روش‌های معین در تهیه داده‌های آب‌های زیرزمینی دشت‌های رشته‌کوهی تریفا در شمال شرق مراکزی از نظر میزان تتراكتور و آلوگ‌های باکتریایی، از روش کریجینگ معمولی برای مطالعه و پیش‌بینی نسبت کیفی آب زیرزمینی استفاده کرد. نتایج نشان داده‌شده تغییرات معنی‌داری در مقایسه با مطالعات قبلی بود و بالین نمود اگر هیچ نوع استراتژی بازاریابی صربت نگیرد، توصیر ادراکی کشاورزی در این مناطق باعث تغییر کیفی آب‌های زیرزمینی می‌شود.

مواد و روش‌ها

منطقه مورد مطالعه

محدوده مطالعاتی سرخون به فاصله قبیری 25 کیلومتری از
بندرعباس در دامنه شرقی شرقی کوچو واقع شده
است. این حرزه به مساحت حدود 71882/6 هکتار و در
مختصات جغرافیایی ۲۷/۵۷ ۳۵/۷۸ عرض شمالی و ۵۶
۰۵/۵۸ طول شرقی در حوزه آب‌های سرخون واقع شده
است. محدوده مطالعاتی سرخون از شمال شرق و شرق به
محدوده شمالی محدود می‌شود. از شمال به محدوده مطاسبیت سرخون به محدوده شمیل-سیراب از غرب به محدوده‌های رضوان، این شرکت با بندر
عباس و از جنوب به خلیف فارس منتهی می‌گردد (شکل 1).

روش تحقیق

در این پژوهش، از میانگین آماری 11 ساله هدایت الکتریکی
مربوط به ۸۴ هلال، پیچیده نمونه‌برداری موجود در دشت سرخون
به‌عنوان مبانی آماری استفاده شد. در مرحله بعد، هیدرودینامیک
مربوط به EC از نظر نرم‌افزاری مورد بررسی قرار گرفتند و
به‌منظور شرح پیش‌ساخت مکانی متغیرها، واریوگرام داده‌های
ترسیم شد.
1. ویژگی‌های متغیر نما

هدف اصلی محاسبه متغیر نما این است که بتوان تغییرنگاری متغیر را نسبت به فاصله محاسبه‌ی از میانگین شناخت. برای این کار لازم است مجموع مربع تفاوت ریز مقادیر به فاصله معلوم از یکدیگر قرار داده، محاسبه و در مقیاس h RMSE (h) کمیت مورد نظر باشد.

2-1. اثر قطعه‌ای

مقدار متغیر نما در مبدأ مختصات یعنی به‌واژه
ای h= 0 اثر قطعه‌ای (Co) ناپاپاده می‌باشد. در حالت به‌ینه، مقدار
ظرفی صفر باشد، اما در پیش‌بینی‌های برگریت از تغییرهای
در این حالت، جزء تصادفی و یا غیر ساختاردار متغیر ظاهر می‌شود
کمیت مورد نظر باشد.

(حسین باک، 2006.)

2-2. اثر ارژیاپی صحت

در این تحقیق، برای انتخاب روش مناسب میانگین بر روی
ارژیاپی مقایسه استفاده شده است. در این روش، در هر مرحله
یک نقطه مشاهده‌ای حذف شده و با استفاده از سایر نقاط
مشاهده‌ای، آخرین نقطه برآورد می‌شود. این کار باعث تأمین نقاط
مشاهده‌ای نکردار می‌شود. گونه‌ای که در پایان، به تعداد نقاط
مشاهده‌ای برآورد و جوهر خواهد داشت. در پایان، با داشتن
مقادیر واکنش و برآورد شده می‌توان خطاهای روش
سقوط‌های یک را برآورد کرد. میزان‌های گوناگون برای این کار
و جوهر دارد که این تحقیق، به‌طور میانگین، خطای ارپی یا
(RMSE) را به دست می‌دهد. میزان خطا (RMSE) ضریب همبستگی مقدار مشاهده‌ای برآوردی (R) استفاده
شده است. معادله‌های مربوط به محاسبه آنها نیز زیر است:

\[MBE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) \]

\[RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \]
تحلیل مکانی شوری آب زیرزمینی در دشت سرخون با استفاده از... روش های مکریک

RMSE =

\[\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \]

\[R = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}} \]

که در این معادله، \(n \) تعداد نقطه مشاهده‌ای مقدار پراوردی بر نقطه \(i \) مقدار مشاهده‌ای بر نقطه \(i \) میانگین مقدار مشاهده‌ای برای نقطه \(i \) مقدار

نتایج

1. نتایج بررسی نرم‌افزار داده‌ها

شرط استفاده مناسب‌ترین مدل برای داده‌های میان‌بایی نرم‌افزار QGIS می‌باشد. مشخص شد که داده‌ها از توزیع نرمال تبعیت می‌کند، بنابراین، داده‌ها به صورت لگاریتمی درآمده‌اند. داده‌ها تا این طرف، داده‌ها از توزیع نرمال تبعیت کنند. به عضارت دیگر، داده‌ها با تبدیل لگاریتمی به توزیع نرمال تبدیل شده‌اند و این طرف، شرط نرم‌افزار داده‌ها برای استفاده از روشهای میان‌بایی صورت پذیرفته. لذا است ذکر شود که شرط نرم‌افزار داده‌ها فقط برای روشهای میان‌بایی کنیجینگ بوده و برای روشهای

معین شرط نیست.

2. نتایج تحلیل واریوگرام

نتایج به‌دست‌آمده از تحلیل سمت واریوگرام EC نشان‌دهنده این بود که مدل واریوگرام به‌دست‌آمده، کمی است و این پارامتر، دارای اثر قطعه‌ای است (جدول 2). در شکل 2، واریوگرام تجربی و مدل پراوردش شده داده برای حالت تبدیل لگاریتمی نشان داده شده است.

جدول 1: پارامترهای میان‌بایی برای واریوگرام هدایت الکتریکی

<table>
<thead>
<tr>
<th>مدل اثر قطعه‌ای</th>
<th>شاخص تأثیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>کروی</td>
<td>0/34</td>
</tr>
</tbody>
</table>
در شکل 4، نقشه کیفیت آب زیرزمینی دشت سرخون بر اساس دیاگرام شورل با استفاده از فاکتور TDS (فلت املاح محلول) نشان داده است.

جدول 4: مساحت مربوط به هریک از طبقات در دشت سرخون بر حسب میکرومتر بر سانتی‌متر

<table>
<thead>
<tr>
<th>طبقات (هاکتار)</th>
<th>مساحت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>932/5</td>
<td>1933/5</td>
</tr>
<tr>
<td>2552/2</td>
<td>2500-3500</td>
</tr>
<tr>
<td>220/8</td>
<td>2500-3500</td>
</tr>
<tr>
<td>242/7</td>
<td>3500-4500</td>
</tr>
<tr>
<td>253/2</td>
<td>4500-5500</td>
</tr>
<tr>
<td>242/7</td>
<td>5500-6500</td>
</tr>
<tr>
<td>270/4</td>
<td>6500-7500</td>
</tr>
<tr>
<td>268/2</td>
<td>7500-8500</td>
</tr>
<tr>
<td>250/3</td>
<td>8500-9500</td>
</tr>
</tbody>
</table>

شکل 4: نقشه تغییرات EC آب‌های زیرزمینی دشت سرخون بر اساس روش کریستینسی معمولی

شکل 5: نقشه کیفیت آب زیرزمینی دشت سرخون بر حسب میکرومتر بر سانتی‌متر

شکل 6: نقشه دشت سرخون از نظر شرب بر اساس دیاگرام شورل

نتایج نقشه مقدماتی

در شکل 4، نقشه مقدماتی EC بر اساس روش کریستینسی معمولی و در شکل 5، نقشه مقدماتی EC آب‌های زیرزمینی دشت سرخون نشان داده شده است.

در جدول 4، مساحت مربوط به طبقات EC نشان داده شده است. برای این اساس، بیشترین مساحت معادل 25/12 هکتار در منطقه 30 متری از سطح سطح منطقه دارد، همان‌طور که میزان 1500 تا 2500 میکرومتر بر سانتی‌متر می‌باشد.
تحقیق مکانی شوری آب زیرزمینی در استفاده از...

همچنین همانطور که در جدول ۵ نشان داده شده است، دشت سرمون از نظر کیفیت آب زیرزمینی براساس دیگرام شورل در پنج گروه قابل قبول، نامتوانی باد و موتاً قابل شرب قرار می‌گیرد. همان‌گونه که ملاحظه می‌شود، بیشترین مقدار شورل (۲۹۸۰ هکتار معادل ۷۵ درصد) دارای وضعیت قابل قبول است.

جدول ۵: مقدار کیفیت آب زیرزمینی در استفاده از نظر شرب براساس دیگرام شورل

<table>
<thead>
<tr>
<th>مقدار TDS</th>
<th>کیفیت</th>
<th>مساحت مورد استفاده (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰ - ۵۰۰۰</td>
<td>۱</td>
<td>۵۸۹/۷۵</td>
</tr>
<tr>
<td>۲۰۰۰ - ۱۰۰۰۰</td>
<td>۲</td>
<td>۱۸۱/۸</td>
</tr>
<tr>
<td>۴۰۰۰ - ۲۰۰۰۰</td>
<td>۳</td>
<td>۱۶۸/۳</td>
</tr>
<tr>
<td>۶۰۰۰ - ۴۰۰۰۰</td>
<td>۴</td>
<td>۱۰۹/۷</td>
</tr>
</tbody>
</table>

در شکل ۷ نشان داده شده که روش کیفیتی براساس معادل نسبی برخی از ویژگی‌های کیفی آب زیرزمینی برای ارزیابی نشان داده شده است. در جدول ۶ نیز میزان مربوط به هر یک از این ویژگی‌ها ارائه شده است.

جدول ۶: مقدار کیفیت آب زیرزمینی در استفاده از نظر شرب براساس دیگرام شورل

<table>
<thead>
<tr>
<th>مقدار کیفیت</th>
<th>مساحت مورد استفاده (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰ - ۵۰۰۰</td>
<td>۵۸۹/۷۵</td>
</tr>
<tr>
<td>۲۰۰۰ - ۱۰۰۰۰</td>
<td>۱۸۱/۸</td>
</tr>
<tr>
<td>۴۰۰۰ - ۲۰۰۰۰</td>
<td>۱۶۸/۳</td>
</tr>
<tr>
<td>۶۰۰۰ - ۴۰۰۰۰</td>
<td>۱۰۹/۷</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

هدف از انجام این پژوهش، انتخاب مناسب‌ترین روش میان‌بایی در نهایت کیفیت آب‌های زیرزمینی از نظر میزان شوری و پهپادی آن برای مصرف شرب و آب‌پیمایی است. در نتایج بدست‌آمده از جدول ۲ و ۳، نشان داده که از بین تمامی روش‌های موجودی که در این پژوهش مورد استفاده قرار گرفت کریچیک معکولی در دو عامل خطا و حداکثر همبستگی است. دقت قابل قبول زمین‌آمار بهره‌برداری کریچیک در مطالعات و تحقیقات پیشین نیز مورد تأیید قرار گرفته است. در این زمینه، نتایج حاضر در مهندسی و همکاران (۲۰۰۸) در مطالعاتی در دشت ارسنجان برده به تحلیل مکانیکی حرکت زیرزمینی که در نهایت به روش کریچیک براساس معادل نسبی برتری داشته و پیشنهادهای مناسب به برای بهبود کیفیت ویژگی‌های کیفی آب زیرزمینی منطقه انتخاب شد. در این پژوهش نیز، نتایج تغییرات شوری در بخش سرمون با روش کریچیک معکولی تهیه شد و بر منابع آن، در سمت سرمون از نظر کیفیت، براساس دیگرام شورل در پنج گروه قابل قبول، نامتوانی باد و موتاً قابل شرب قرار گرفت (جدول ۶). نقشه‌های الکتریکی نتایج داشت سرمون نشان می‌دهد که به‌طور کلی، آب‌های زیرزمینی در بخش غربی و ورودی و همچنین مرکزی دشت، دارای املاح کمتری بوده که می‌توان آن

![شکل ۷: نقشه کیفیت آب زیرزمینی در استفاده از نظر شرب (مکرومپس پر سانتری متر) برای آب‌پیمایی](https://deej.kashanu.ac.ir)
آسف نیست، منفی معنی‌دار است و آسیب‌پذیر سخنگویی شده و بر

این اساس، اقایان مدیریت مانند عدم صدور مجوز حفر

چهارم، همچنین استقرار صنایع آلایند و محدود کردن

به‌برداری از شرکت‌های موجود با منظره جلوگیری از

برداشت‌های دریایی آب، ایجاد طرح‌های آبخیزداری و تغذیه

مصوبه دشت با توجه به سیلابی بودن منطقه برای پایداری

سطح آب زیرزمینی، استفاده از پاسخ تشفیه‌خانه فاضلاب شهر

بندنباس با رعایت همه استانداردهای به‌خیل شناوری، ایجاد

فرهنگ صرفه و کنترل دقیق مصرف آب شرب مشترکین

روستایی، استفاده از آب‌شریان‌کن‌های کوچک با استفاده از

روش‌های اسم‌بزرگی (RO) جهت تأمین آب شرب دشت

صورت گیرد.

n. university of Tehran press. P. 393.

8. Maleky gonadishy, F., Rahnama, M., Rezaey, A.,

2009. Quality study of water resource Zarand

plain from an act of drinking with use of

geosastic and GS software. The second water

and sewage seminar, Iran, September 12-14.

rainfall data using classical statistical methods

and Geostatistical and comparison with

10. Shaebany, M. 2009. Determine of suitability

method geostatistic to provide PH and TDS map

of groundwater resource (case study: Arsanjan

plain). Iran water engineering journal. 1: 47-57.

11. Taghizadeh-mehrjardi, R., Zareian Jahromi, M.,

Mahmodi, Sh. Heidari, A., 2008. Spatial

Distribution of Groundwater Quality with

Geostatistics (Case Study: Yazd-Ardakan

09-17.

Evaluation and optimization of groundwater

observation networks using the kriging

methodology. j. of Environmental Modeling and

software.22(3):414.

and local analysis of water resource quality

character in the Garmshar basin. Research plan of

Tehran University.

منابع

1. خدادی، کمال، شهسواره، عنوان 1384، به‌هم‌بندی

آسیب‌پذیری ذاتی آب‌خواه یک جودین در مقابل آلودگی با

استفاده از روش‌های DRASTIC و GODS

شرکت سهامی آل‌پنتهازی خراسان.

Neural Network Performance Compared with

other methods in place to estimate of spatial

daily rainfall. Sixth International Conference on

civil Engineering. Iran, Isfahan University of

technology, may 15-17.

performance in forest inventory and map-

building business (case study: forest work

Baneshky Ramsar). Journal- Research spruce

and forests of Iran. Volume 17 (No. 2). 303 -

308.

4. Dagostino, V., Greene, E.A., Passarella, G. and

Vurro, M. 1998. Spatial and temporal study of

nitrate concentration in groundwater by means

of co‐regionalization. Environmental geology,

36, 285-295

5. Fetouani, S., Sbaa, M., Vanclooster, M.,

quality in the irrigated plain of Triffa (North-

east Morocco). Journal of Agricultural Water

Management 95: 133-142.

7. Maleky gonadishy, F., Rahnama, M., Rezaey, A.,

2009. Quality study of water resource Zarand

plain from an act of drinking with use of

geosastic and GS software. The second water

and sewage seminar, Iran, September 12-14.

rainfall data using classical statistical methods

and Geostatistical and comparison with

method geostatistic to provide PH and TDS map

of groundwater resource (case study: Arsanjan

plain). Iran water engineering journal. 1: 47-57.

10. Taghizadeh-mehrjardi, R., Zareian Jahromi, M.,

Mahmodi, Sh. Heidari, A., 2008. Spatial

Distribution of Groundwater Quality with

Geostatistics (Case Study: Yazd-Ardakan

09-17.