1. 1. Belnap, J., Büdel, B. and Lange, O. L., 2003. Biological soil crusts: characteristics and distribution Biological soil crusts: structure, function, and management, Springer, p. 3-30.
2. 2. Belnap, J., Prasse, R. and Harper, K., 2001. Influence of biological soil crusts on soil environments and vascular plants Biological soil crusts: structure, function and management, Springer, p. 281-300.
3. 3. Bertamini, M., N. Nedunchezhian and B. Borghi. 2001. Effect of iron deficiency induced changes in photosynthetic pigments, ribulose-1, 5-bisphosphate carboxylase, and photosystem activies in field grown grapevine (Vitis vinifera L.) leaves. Photosynthetica 39: 59-65.
4. 4. Beymer, R.J., and Klopatek, J.M. 1991. Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid soil Research and Rehabilitation, 5: 187-98.
5. 5. Cai, Z., Ji, B., Yan, K. and Zhu, Q., 2019. Investigation on Reaction Sequence and Group Site of Citric Acid with Cellulose Characterized by FTIR in Combination with Two-Dimensional Correlation Spectroscopy. Polymers, 11(2071):1-13.
6. 6. Cox, R. J., Peterson, H. L., Young, J., Cusik, C. and Spinoza, E. O., 2000. The forensic analysis of soil organic by FTIR. Forensic Science International, 108: 107-116.
7. 7. Chen, Y.L., Guo, Y.Q., Han, S.J., Zou, C.J., Zhou, Y.M., and Cheng, G.L. 2002. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil. J. Forest. Res.13: 2. 115-118.
8. 8. Dainin, A., and Ganor, E. 1991. Trapping of airborn dust by mosses in the Negev Desert Earth Surf process Landforms, 16: 153-162.
9. 9. Gregorich, E.G., Carter, M.R., Doran, J.W., Pankhurst, C.E., and Dwyer, L.M. 1997. Biological attributes of soil quality. Developments in soil science, 25:81-113.
10. 10. Jolliffe, I. T., 2012. Principal component analysis. Second Edition, Springer, 518p.
11. 11. Khademi, Z., Malakouti, M. J. and Johnz, D., 2008. Effect of organic root acids on the ability to absorb nutrients in the rhizosphere. Iranian Journal of Soil Research, 21(2):171-189.
12. 12. Kleiner, E. F. and Harper, K. T. 1972. Environment and community organization in grasslands on Canyonlands National Park. Ecology, 53: 2. 299-309.
13. 13. Kumpiene J., Lagerkvist A., Maurice C. 2002. Stablization of As, Cr, Cu, Pb and Zn in soil using amendments-a review , Division Of Waste Science & Tecnology, Lulea University Of Tecnology,SE97187- Lulea, Sweden.
14. 14. Lal, R., 2003. Soil erosion and the global carbon budget. Environment International, 29: 437-450.
15. 15. Lal, R., 2004. Carbon sequestration in dryland ecosystems. Environmental Management, 33: 528-544.
16. 16. Lindsay, W. L. 1991. Iron oxide solubilization by organic matter and its effect on iron avail-ability. Plant. Soil. 130(1-2): 27-34.
17. 17. Li, X. R., Zhang, P., Su, Y.G. and Jia, R. L. 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four-year field study. Catena, 97: 119-126.
18. 18. Mager, D. M., 2010. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biology and Biochemistry, 42(2): 313-318.
19. 19. McGrath S.P and P.W Lane.1989. An Explanation for the apparent losses of metals in a long–term field experiment with sewage sludge. Nviron. Pollut.256-60:235.
20. 20. Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London.
21. 21. Naidu, R. Oliver, D. Mc.Stuart. 2003. Heavy Metal Phytotoxicity in Soils. In: A. Langley, M. Gilbey, and B. Kwnnedy (Eds). Proceding of the Fifth National Workshop on the Assessment of Site Contamination. 24-235.
22. 22. Margenot, A. J., Calderon, F. J., Bowles, M. T., Parikh, S. J. and Jackson, E. L., 2015.Soil organic matter functional group composition in relation to organic carbon, nitrogen and phosphorus fraction in organically managed tomato field. Soil Sci. Soci. of Am J., 772-782.
23. 23. Margenot, A. J., Calderon, F. J., Goyne, K. W., Mukome, F. N. D. and Parikh, S. J., 2017. IR spectroscopy, Soil analysis application. Ecylcopedia of spectroscopy and spectrometry, Thirth Edition, 2:448-454.
24. 24. Parikh, J. S., Goyne, W. K., Margenot, J, A., Mukome, F. N. D. and Calderon, F. J., 2014. Advances of agronomy: Chapter 1: Soil Chemical Insights Provided through Vibrational Spectroscopy. Department of Plant and Soil Science, University of Delaware, USA, 16: 313p.
25. 25. Pestana, M., P.J. Correia, A. de-Varennes, J. Abadia and E.A. Faria. 2001. Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. J. Plant Nutr. 24(5): 613-622.
26. 26. Phillips, S.L., and Belnap, J. 1998. Shifting carbon dynamics due to the effects of Bromus tectorum invasion on biological soil crusts. Ecological Bulletin, 79: 205.
27. 27. Rasouli Sadaghiani, M. H., Dareghayedi, B., Khodaverdiloo, H. and Moradi, N., 2015. Effect of organic acids on sorption and immobilization of Fe in acidic and calcareous soils. Journal of soil Management and Sustainable, 5(1): 215-228.
28. 28. Renella, G., Landi, L.L., and Nannipieri, P. 2004. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma. 122: 311-315.
29. 29. Rengel, Z., and Romheld, V. 2000. Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil. 222: 25-34.
30. 30. Sedgwick, Ph., 2012. Pearson's correlation coefficient. Article in BMJ (online), 3p, https://www.researchgate.net/publication/275470782.
31. 31. Reyhanitabar, A., Khalkhal, K. and Pashapoor, N. 2017. Relationship between Available Fe and its Chemical Fractions in Some Calcareous Soils of East Azarbaijan Province. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 21(3):69-83.
32. 32. Rodriguez Caballero, E., Escribano, P., Olehowski, C., Chamizo, S., Hill, J., Canton, Y. and Weber, B., 2017. Transferability of multi-Hyperspectral optional biocrust indices. ISPRS J.of photo & remote sens, 126: 94-107
33. 33. Soleimanzadeh, M., Khormali, F., Sohrabi, M., Ghorbani Nasrabadi, R. and Kehel, M., 2019. Evaluation of biological characteristics of soil quality under the biological site of Glasgow misguidance Golestan. Journal of Agriculture of Engineering, 42(3): 1-17.
34. 34. Singh, G. H., 1970. Effect of sulfur in preventing the occurrence of chlorosis in peas. Agronomy Journal, 62:708-711.
35. 35. Sodano, M., Lerda, C., Nistico, R., Martin, M. Magnacca, G., Celi, K. and Said-Pullicino, D., 2017. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma, 307: 19-29.
36. 36. Taglivini, M., SCudellani, D., Maragani, B. and Toselli, M., 1995. Acid –spray regreening of kiwifruit leaves affected by lime induced iron chiorosis. In:191-195. Abadia, J.(Eds), Iron nutrition in soil plant. Kluwer Academic Publications.
37. 37. Taiz, L. and E. Zeiger. 1998. Assimilation of mineral nutrients. PP. 323-345. In: Plant Physiology, 2nd Edition, Sinauer Assoc. Inc., Publishers, Sunderland, MA.
38. 38. Vert, G., N. Grotz, F. Dedaldechamp, F. Gaymard, M.L. Guerinot, J.F. Briat and C. Curie. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth. Plant Cell J. 14: 1223-1233.
39. 39. Whalen, J.K., Chang, C. 2002. Macroaggregate characteristics for sustainable land use in Danangou catchment of the Loess Plateau, China, Catena, 54: 17-29.
40. 40. Welch, R.M., W.H. Allaway, W.A. House and I. Kubota. 1991. Geographic distribution of trace element problems. In: Mordvedt, J.J., F.R. Cox, L.M. Shuman and R.M. Welch (Eds.), Micronutrients in Agriculture, 2nd Edition, SSSA Book Series, Madison, WI, USA.
41. 41. Young, M. J., 2003. Characterization of pH-Dependent IR Spectra of Oxalic Acid: Comparison of Self-Modeling Curve Resolution Analysis with Calculation of IR Frequencies. Bullten of Korean Chemistry Society, 24(9): 1410-1413.